Mark Scheme (Results)

January 2019

Pearson Edexcel International Advanced
Level In Statistics S2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019
Publications Code WST02_01_1901_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- - or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A 1 ft to indicate that previous wrong working is to be followed through. After a misread
however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. Ignore wrong working or incorrect statements following a correct answer.

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \({ }^{\text {arks }}\) \\
\hline 2. (a) \& \begin{tabular}{rl|l}
{\([X \sim \operatorname{Po}(2)]\)} \\
\(\mathrm{P}(X<5)\) \& \(=\mathrm{P}(X \leq 4)\) \\
\& \(=0.947346 \ldots\). \& awrt \(\underline{\mathbf{0 . 9 4 7}}\)
\end{tabular} \\
\hline (b) \& \[
\begin{array}{ll}
Y \sim \operatorname{Po}(6) \& \mathrm{B} 1 \\
\mathrm{e}^{-6} \frac{6^{n}}{(n)!}=\mathrm{e}^{-6} \frac{6^{n+1}}{(n+1)!} \rightarrow(n+1)=6 \quad \text { or } \begin{array}{l}
\mathrm{P}(Y=4)=0.13385 \ldots \\
\mathrm{P}(Y=5)=0.16062 \ldots \\
\mathrm{P}(Y=6)=0.16062 \ldots \\
\underline{\boldsymbol{n}=\mathbf{5}}
\end{array} \& \mathrm{M} 1 \\
\text { A1 }
\end{array}
\] \\
\hline (c) \& \[
\begin{array}{rlrl}
{[D \sim \operatorname{Po}(9)]} \& \& \\
\begin{array}{rlrl}
\mathrm{P}(c \leq D \leq 12) \& =\mathrm{P}(D \leq 12)-\mathrm{P}(D \leq c-1) \& \text { or } \mathrm{P}(X \leq d) \& =0.8758-0.8546 \\
0.8546 \& =0.8758-\mathrm{P}(D \leq c-1) \& \& =0.0212 \\
\mathrm{P}(D \leq c-1) \& =0.0212 \& \mathrm{M} 1 \\
c-1 \& =3 \& \mathrm{P}(X \leq 3) \& =0.0212 \\
\underline{c}=\mathbf{4} \\
\& \& \underline{c}=\mathbf{4} \& \mathrm{dM} 1 \\
\end{array}
\end{array}
\] \\
\hline (d) \& \(\mathrm{P}(X=2)=0.27067 \ldots\)
\(W \sim \mathrm{~B}(6\), awrt \(0.27067 \ldots)\)
\(\mathrm{P}(W=4)={ }^{6} \mathrm{C} 4(" 0.27067 \ldots)^{4}(1-" 0.27067 \ldots ")^{2}\)
\(=0.0428 \ldots\)\(\quad\) awrt \(\underline{\mathbf{0 . 0 4 3}}\)\begin{tabular}{ll}
\&
\end{tabular} \begin{tabular}{l}
B 1 \\
B 1 ft \\
M 1 \\
A 1 \\
\\
{\([\mathbf{1 2}\) marks \(]\)}
\end{tabular} \\
\hline \& Notes \\
\hline (a)
(b)
(c)

(d) \& | M1 for writing or using $\mathrm{P}(X \leq 4)$ If answer is incorrect this must be shown |
| :--- |
| B1 for writing or using $\mathrm{Po}(6)$ |
| M1 for a correct expressions for $\mathrm{P}(Y=n)$ and $\mathrm{P}(Y=n+1)$ using their value of λ or for finding at least 2 of the given probabilities for $\operatorname{Po}(6)$ only correct to 3 sf. |
| A1 must be only one value of n given. If more than one value of n is given working must be shown to award the B1 and M1, 5 on its own gains B1M1A1 |
| $1^{\text {st }} \mathrm{M} 1$ for the expression $\mathrm{P}(D \leq 12)-\mathrm{P}(D \leq c-1)$ oe Condone $\mathrm{P}(D \leq 12)-\mathrm{P}(D \leq c)$ allow any letters. |
| $2^{\text {nd }} \mathrm{dM} 1$ for correct substitution of 0.8758 (awrt 0.876) and 0.8546 leading to $\mathrm{P}(D \leq c-1)=$ a probability. Condone $\mathrm{P}(D \leq c)=$ a probability allow any letters |
| For an awrt 0.043 from correct working award full marks. |
| $1^{\text {st }}$ B1 for awrt 0.271 seen |
| $2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$ Follow through their $\mathrm{P}(X=2)$ but you must see either $\mathrm{B}(6$, " $0.27067 \ldots$..") or working of the form ("0.27067...") $)^{4}(1-" 0.27067 \ldots . .)^{2}$. Condone missing ${ }^{6} \mathrm{C}_{4}$ |
| NB If $\mathrm{P}(X=2)$ is not stated and 0.271 is not seen do not ft . |
| $\mathrm{M} 1{ }^{6} \mathrm{C}_{4} p^{4}(1-p)^{2}$ or $\mathrm{P}(W \leq 4)-\mathrm{P}(W \leq 3)$ or $0.9932 \ldots-0.9504 \ldots$ written |

\hline
\end{tabular}

Question Number	Scheme	Marks
3. (a)	$\mathrm{P}(3<X<7)=\mathrm{F}(7)-\mathrm{F}(3)[=0.7-0.2]$	$\begin{array}{\|l\|} \hline \text { M1 } \tag{2}\\ \text { A1 } \end{array}$
(b)	$\begin{array}{ll}a=\frac{0.4-0}{4-2} \quad b=\frac{0}{6-4} \quad c=\frac{1-0.4}{8-6} & \underline{\boldsymbol{a}=\mathbf{0 . 2}} \quad \underline{b=0} \quad \underline{c}=\mathbf{0} .3\end{array}$	M1 A1 A1
(c)	$\begin{aligned} \mathrm{E}(X) & =\int_{2}^{4} 0.2 " x \mathrm{~d} x\left[+\int_{4}^{6} 0 " x \mathrm{~d} x\right]+\int_{6}^{8} " 0.3 " x \mathrm{~d} x \\ \mathrm{E}(X) & =\left[\frac{0.2 x^{2}}{2}\right]_{2}^{4}+\left[\frac{0.3 x^{2}}{2}\right]_{6}^{8} \\ & =\underline{\mathbf{5 . 4}} \end{aligned}$ Alternative $\begin{aligned} \mathrm{E}(X) & =3 \times p+7 \times 2 \times \text { "their } c \text { " } \quad \text { or } 3 \times 2 \times \text { "their } a "+7 \times p \text { where } 0<p<1 \\ & =3 \times " 0.4 "+7 \times " 0.6^{"} \\ & =\underline{\mathbf{5 . 4}} \end{aligned}$	M1 A1ft A1 (3) Alternative M1 A1ft A1 [8 marks]
	Notes	
(a) (b) (c)	M1 for writing or using $\mathrm{F}(7)-\mathrm{F}(3)$ Implied by answer 0.5 M1 for attempt to find the gradient of at least 1 line segment (may be implied by either a or c correct) $1^{\text {st }} \mathrm{A} 1$ two values correct $2^{\text {nd }} \mathrm{A} 1$ all three values correct M1 for a correct expression for $\int x \mathrm{f}(x) \mathrm{d} x$ (ignore limits) using their a, b and c (Condone a, b and c as a function of x) and an attempt to integrate $\left(x^{n} \rightarrow x^{n+1}\right)$. No need to see $\int_{4}^{6} " 0 " x \mathrm{~d} x$ if $b=0$ otherwise it must be present A1ft correct integration with correct limits (ft their constants a, b and c from part (b)) A1 5.4 oe Alternative M1 must have 3, 7 and one half correct ft their values for a / c. A1ft $3 \times 2 \times$ "their $a^{\prime \prime}+7 \times 2 \times$ "their $c "$ A1 5.4 oe	

Question Number	Scheme	Marks
4. (a)	$\mathrm{H}_{0}: p=0.35$$\mathrm{H}_{1:}: p>0.35$ Probability route $\mathrm{P}(X \geq 11)=1-\mathrm{P}(X \leq 10)[=1-0.9468]$ CR route $=0.0532$ $\mathrm{P}(X \leq 11)=0.9804$ $\mathrm{P}(X \geq 12)=0.0196$ $\mathrm{CR}: X \geq 12$ Do not Reject H_{0} or not significant or 11 does not lie in the CR Hadi's belief is not supported or the proportion of customers paying by credit card is not greater than 35%.	B1 M1 A1 dM1 A1cso
(b)	$\begin{align*} & X \sim \mathrm{~B}(20,0.35) \tag{5}\\ & {[\mathrm{E}(X)=] 7} \\ & \mathrm{~S} . \mathrm{D} .=\sqrt{20 \times 0.35 \times 0.65}[=\sqrt{4.55}=2.133 \ldots] \\ & \left." 7 "+2 \times " 2.133 \ldots "\|11-" 7 "<2 \times 2.133 \ldots "\| \begin{array}{c\|c} \\ & \frac{11-" 7 "}{\sqrt{" 4.55 "}} \\ \\ 11<11.266 & 4<4.266 \end{array} \right\rvert\, 1.875<2 \end{align*}$	B1 B1 M1 A1cso (4) [9 marks]
	Notes	
(a)	B1 both hypotheses correct (may use p or π). Must have H_{0} and H_{1} $1^{\text {st }} \mathrm{M} 1$ for writing or using $1-\mathrm{P}(X \leq 10)$ or if leading to a CR allow $\mathrm{P}(X \leq 11)=\mathrm{a}$ (condone 0.98) or $\mathrm{P}(X \geq 12)=$ awrt 0.0196 (may be implied by awrt 0.0532 or A1 for 0.0532 or CR: $X \geq 12$ oe NB M1 A1 for $0.9468<0.95$ $2^{\text {nd }}$ M1 Dependent on the $1^{\text {st }}$ M1. For a correct statement i.e. not significant/accept $\mathrm{H}_{0} /$ Not in CR Follow through their probability/CR and their H_{1}. Must have a Critical region critical value Do not allow non-contextual conflicting statements. May be implied by a correct contextual statement on its own $2^{\text {nd }}$ A1cso fully correct solution and correct contextual statement. Underlined words req correct statement. eg Allow Hadi is wrong or Hadi's claim is not supported The (proportion/percentage/number/rate/probability) paying by credit card (is not great $35 \%(0.35) /$ remains the same) or there is insufficient evidence that the proportion of cu pay by credit card has increased $1^{\text {st }} \mathrm{B} 1 \quad \mathrm{E}(X)=7$ $2^{\text {nd }} \mathrm{B} 1$ for a correct expression for standard deviation M1 for using 'mean' $+2 \times$ 'standard deviation' or 11- "their mean" $<2 \times$ 'standar or $\frac{11-\text { "their } \mathrm{E}(X) "}{\text { "Their } \mathrm{sd} "}$ If $\mathrm{E}(X)$ and sd not given then allow $5<\mathrm{E}(X)<10 \text { and } 0<\mathrm{sd}<5$ A1cso for comparison with 11 or 4 or 2 allow awrt (11.3 or 4.27 or 1.88 or 6.43) oe a seen	rt 0.980 correct CR) not just a uired and in a r /is tomers who deviation' nd no errors

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme Marks \\
\hline 5. (a)(i) \& \begin{tabular}{lll|l}
\(\frac{(b-2 a)-a}{b-a}=\frac{1}{3}\) \& \(\frac{b-(b-2 a)}{b-a}=\frac{2}{3}\) \& M1 \\
\(3(b-3 a)=(b-a)\) \& \(6 a=2(b-a)\) \& oe \& \\
\(b=4 a\) \& or \& \& E \((X)=\frac{a+4 a}{2}=\frac{5 a}{2} *\)
\end{tabular}\(\quad\) M1A1cso \(\quad\) (3) \\
\hline (ii) \& \begin{tabular}{l}
{\([[\mathrm{P}(X>b-4 a)=\mathrm{P}(X>0)=] 1\)} \\
\hline
\end{tabular} \\
\hline (b)(i) \& \[
\begin{array}{ll|l}
\frac{(c-3)^{2}}{12}=3 c-9 \& \mathrm{M} 1 \\
c^{2}-42 c+117=0 \rightarrow(c-3)(c-39)=0 \& \underline{c=39} \& \mathrm{~A} 1
\end{array}
\] \\
\hline (ii) \& \begin{tabular}{l|l}
\(\mathrm{P}(2 Y-7<20-Y)=\mathrm{P}(Y<9)\) \& awrt 0.167 \\
\(\frac{9-3}{{ }^{3} 9^{\prime}-3}=\frac{1}{6}\) \& \begin{tabular}{l}
M 1 \\
\(\mathrm{~A} 1 \mathrm{ft} \mathrm{A1}\) \\
\((3)\)
\end{tabular} \\
\(\mathrm{E}\left(Y^{2}\right)=\operatorname{Var}(Y)+[\mathrm{E}(Y)]^{2}=\left(3\left('^{\prime} 39^{\prime}\right)-9\right)+\left(\frac{\prime 39^{\prime}+3}{2}\right)^{2}\) \& M 1 A 1 ft \\
\(\mathrm{E}\left(Y^{2}\right)=\underline{\mathbf{5 4 9}}\) \& A1 (3) \\
\& {\([\mathbf{1 3}\) marks] }
\end{tabular} \\
\hline \& Notes \\
\hline (a)(i)
(b)(i)

(ii)

(iii) \& | $1^{\text {st }}$ M1 for a correct probability equation $=\frac{1}{3}\left(\right.$ or a correct probability equation $=\frac{2}{3}$)in terms of a and b $2^{\text {nd }} \mathrm{M} 1$ for use of $\mathrm{E}(X)=\frac{a++^{\prime} 4 a^{\prime}}{2}$ oe |
| :--- |
| A1cso correct solution with no errors seen. $1^{\text {st }} \mathrm{M} 1 \text { for } \frac{(c-3)^{2}}{12}=3 c-9$ |
| $2^{\text {nd }} \mathrm{M} 1$ for rearranging correctly to form $3 \mathrm{TQ}=0$ and attempt to solve or $\frac{c-3}{12}=3 \mathrm{oe}$ |
| For attempt at factorising it must give two of the terms when multiplied out |
| For using the formula allow 1 slip if the correct formula is written down otherwise no errors For completing the square allow one sign error. |
| A1 If more than one value is given and $c=39$ is not clearly selected then A0. Allow [3,39] |
| M1 for rearranging to (or using) $\mathrm{P}(Y<9)$ |
| $1^{\text {st }}$ Alft for a correct probability expression ft their ' 39 '. If (i) is incorrect we must see a correct expression eg $\frac{9-3}{43 "-3}$ or $\frac{6}{36 "}$ to ft |
| M1 for writing or using $\mathrm{E}\left(Y^{2}\right)=\operatorname{Var}(Y)+[\mathrm{E}(Y)]^{2}$ (must be $\mathrm{E}\left(Y^{2}\right)=\int_{3}^{139^{\prime}} \frac{1}{39^{\prime}-3} y^{2} \mathrm{~d} y$ with $y^{2} \rightarrow y^{3}$ condone different letter. If c is incorrect, they must show where $\operatorname{Var}(Y)$ and $\mathrm{E}(Y)$ come from. A1ft correct (follow through) expression for $\mathrm{E}\left(Y^{2}\right)$ allow $\frac{1}{39^{\prime}-3}\left[\frac{y^{3}}{3}\right]_{3}^{\prime 39^{\prime}}$ |

\hline
\end{tabular}

Question Number	Scheme	Marks
6. i.(a)	n is large and p is small	B1 (1)
(b)	$\begin{aligned} & {[X \sim \mathrm{~B}(3000,0.0025) \rightarrow] Y \sim \operatorname{Po}(7.5)} \\ & \mathrm{P}(Y>7)=1-\mathrm{P}(Y \leq 7)=1-0.5246=0.47536 \ldots \quad \text { awrt } \underline{\mathbf{0 . 4 7 5}} \end{aligned}$	B1 M1 A1 (3)
ii.(a)	A list/database/register of all employees	B1 (1)
(b)	The probability distribution of the number of employees that cycle to work [from all possible samples of 150]	B1
		(1)
(c)	$\begin{aligned} & D \sim \mathrm{~N}(60,36) \\ & \mathrm{P}(C \leq \alpha)=\mathrm{P}(Z \leq z)=0.0668 \\ & \frac{\alpha-" 60 "}{" 6 "}=-1.5 \text { or } \frac{" 60 "-\alpha}{" 6 "}=1.5 \end{aligned}$ $\alpha=51$	B1 M1 B1 A1cao
		(4)
(d)	$\begin{aligned} & \mathrm{P}(C \leq 51)=\mathrm{P}(D \leq 51.5) \\ & \mathrm{P}\left(Z \leq \frac{" 51 "-" 60 "+0.5}{" 6 "}\right) \\ & =\mathrm{P}(Z \leq-1.42)=1-0.9222 \\ & =0.0778 / 0.0782 \ldots \end{aligned}$ awrt $\underline{0.078}$	M1 A1 (2) [12 marks]
	Notes	
(a) i. (b) ii (a) (b) (c) (d)	n is bigger then 10 and $p<0.25$ B1 for writing or using $\operatorname{Po}(7.5)$ M1 for writing or using $1-\mathrm{P}(Y \leq 7)$ oe B1 must be all employees B1 Allow number of employees that cycle to work and their associated probabilities $1^{\text {st }}$ B1 for Normal approximation with mean $=60$ and variance $=36 /$ standard deviation $=6$ M1 for standardising with no continuity correct and equating to z using their mean and sd (if not stated clearly they must be correct here), with $\|z\|>1$ $2^{\text {nd }} \mathrm{B} 1$ for -1.5 (or 1.5) Their sign must be compatible with their standardisation. Allow if used their 36 instead of their 6 M1 for standardising with use of continuity correction 'their 51 ' +0.5 allow same mean and sd used in part(c) A1 awrt 0.078	

Question Number	Scheme	Marks
7. (a)	$\begin{align*} & \int_{-3}^{0} c(x+3) \mathrm{d} x+\int_{0}^{3} \frac{5}{36}(3-x) \mathrm{d} x \text { or } \end{align*} \text { area of triangle }=\frac{3 \times 3 c}{2}+\frac{3 \times \frac{5}{36}(3)}{2}, ~ \frac{3 \times 3 c}{2}+\frac{5}{8}=1 \quad \text { o }$ Alternative $\left[\int c(x+3)\right]=c\left(\frac{x^{2}}{2}+3 x\right)+d \text { and }\left[\int \frac{5}{36}(3-x)\right]=\frac{5}{36}\left(3 x-\frac{x^{2}}{2}\right)+e$ Using $\mathrm{F}(-3)=0$ and $\mathrm{F}(3)=1 \quad$ and $d=e$ $c=\frac{1}{12} *$	M1 dM1 A1cso (3) M1 dM1 A1 cso
(b)(i) (ii)	A correct sketch of $\mathrm{f}(x)$ with straight line positive gradient from $-3 \leq x<0$ and straight line negative gradient from $0 \leq x \leq 3$, LHS below RHS at y axis Correct labels: -3 and 3 on x-axis and $\frac{1}{4}$ and $\frac{5}{12}$ oe on y-axis Highest point [at $\mathrm{f}(0)$, so $X=0$ is the mode] oe	B1 B1 B1 (3)
(c)		M1
(d)	$\begin{aligned} & {[\mathrm{P}(X>d \mid X>0)=] \frac{1-\mathrm{F}(d)}{1-\mathrm{F}(0)}=\frac{2}{5} \text { oe }} \\ & 1-\mathrm{F}(d)=\frac{2}{5} \times \frac{5}{8}\left[=\frac{1}{4}\right] \text { oe } \\ & \text { Using cdf } \quad \text { or } \quad \text { area of triangle } \\ & 1-\left(" \frac{5}{12} d-\frac{5}{72} d^{2}+\frac{3}{8} "\right)=" \frac{2}{5} \times \frac{5}{8} \quad \text { or } \quad \frac{(3-d) \frac{5}{36}(3-d)}{2}=" \frac{2}{5} \times \frac{5}{8} " \mathrm{oe} \\ & d=\text { awrt } \underline{\mathbf{1 . 1 0}} \end{aligned}$	M1 A1 dM1 A1 (4) [14 marks]
	Notes	
(a) (b)(ii) (c)	M1 for correct integrals added, including limits, or area of triangle. Condone missing $\mathrm{d} x$ Do not accept $\mathrm{c}(0+3)=5 / 36(3-0)$ dM 1 for equating to 1 and attempting to solve A1 cso for $c=\frac{1}{12}$ with no incorrect working seen B1: oe eg Maximum value. Condone highest probability M1 for attempting to integrate first line of pdf with correct limits $\underline{\boldsymbol{o r}}+c$ and $\mathrm{F}(-3)=0$ $\underline{\boldsymbol{o r}}$ for attempting to integrate second line of pdf with correct limits $+\mathrm{F}(0) \underline{\text { or }}+d$ and $\mathrm{F}(3)=1$	

NB Allow use of $\mathrm{F}(0)=\frac{3}{8}$ instead of either $\mathrm{F}(-3)=0$ or $\mathrm{F}(3)=1$
B1 $1^{\text {st }}$ and $4^{\text {th }}$ line correct. Allow one of range to be otherwise, \leq instead of $<$ and \geq instead of $>$ $1^{\text {st }}$ A1 correct $2^{\text {nd }}$ line with limits. Allow $<$ instead of \leq and vice versa $2^{\text {nd }} \mathrm{A} 1$ correct $3^{\text {rd }}$ line with limits. Allow $<$ instead of \leq and vice versa
(d) $1^{\text {st }} \mathrm{M} 1$ for a correct probability expression, allow $\frac{\mathrm{P}(X>d)}{\mathrm{P}(X>0)}=\frac{2}{5}$ oe implied by A1.

Do not allow $\mathrm{P}(X>d) \cap \mathrm{P}(X>0)$ for $\mathrm{P}(X>d)$
$1^{\text {st }} \mathrm{A} 1$ for $1-\mathrm{F}(d)=\frac{2}{5} \times \frac{5}{8}$ or $1-\mathrm{P}(x<d)=\frac{2}{5} \times \frac{5}{8}\left[=\frac{1}{4}\right]$ or $\mathrm{F}(d)=\frac{3}{4}$ or $\mathrm{P}(x>d)=\frac{1}{4}$ oe
$2^{\text {nd }} \mathrm{dM} 1$ previous M 1 awarded. For $1-\mathrm{F}(d)=$ their $\mathrm{P}(X>d)$ for their cdf oe and attempting to solve leading to a value for d.

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

